A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers
نویسنده
چکیده
A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The transparent structure of the universal defuzzification approximator allows to analyze the generated customized defuzzification method using the existing theories of defuzzification. The integration of universal defuzzification approximator instead of traditional methods in Mamdani-type fuzzy controllers can also be considered as an addition of trainable nonlinear noise to the output of the fuzzy rule inference before calculating the defuzzified crisp output. Therefore, nonlinear noise trained specifically for a given application shows a grade of confidence on the rule base, providing an additional opportunity to measure the quality of the fuzzy rule base. The possibility of modeling a Mamdani-type fuzzy controller as a feed-forward neural network with the ability of gradient descent training of the universal defuzzification approximator and antecedent membership functions fulfill the requirement known from multilayer preceptrons in finding solutions to nonlinear separable problems.
منابع مشابه
A Trainable Transparent Universal Approximator for Defuzzi cation in Mamdani Type Neuro-Fuzzy Controllers
|A novel technique of designing application speci c defuzzi cation strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzi cation approximator is validated by showing the convergence when approximating several existing defuzzi cation strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The ...
متن کاملA Defuzzification Based New Algorithm for the Design of Mamdani-Type Fuzzy Controllers
This paper presents a new learning algorithm for the design of Mamdani-type or fully-linguistic fuzzy controllers based on available input-output data. It relies on the use of a previously introduced parametrized defuzzification strategy. The learning scheme is supported by an investigated property of the defuzzification method. In addition, the algorithm is tested by considering a typical non-...
متن کاملA New Highly Controllable and Accurate Algorithm for Defuzzifier Circuit Implementation
Defuzzifier circuit is one of the most important parts of fuzzy logic controllers that determine the output accuracy. The Center Of Gravity method (COG) is one of the most accurate methods that so far been presented for defuzzification. In this paper, a simple algorithm is presented to generate triangular output membership functions in the Mamdani method using the multiplier/divider circuit and...
متن کاملDesigning Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems
This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then...
متن کاملMathematical Model of the Simplest Fuzzy PID Controller with Asymmetric Fuzzy Sets
This paper deals with the simplest fuzzy PID controllers which employ two fuzzy sets for each of the three input variables and four fuzzy sets for the output variable. Mathematical model for a fuzzy PID controller is derived by using asymmetric Γ-function type and L-function type membership functions for each input, asymmetric trapezoidal membership functions for output, algebraic product trian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 6 شماره
صفحات -
تاریخ انتشار 1998